Introduction to Bayesian Statistics

Murray Logan

15 September 2024

Frequentist vs Bayesian

Frequentist

  • P(D|H)
  • long-run frequency
  • relatively simple analytical methods to solve roots
  • conclusions pertain to data, not parameters or hypotheses
  • compared to theoretical distribution when NULL hypothesis is true
  • probability of obtaining observed data or MORE EXTREME data

Frequentist

  • P-value
    • probabulity of rejecting NULL
    • NOT a measure of the magnitude of an effect or degree of significance!
    • measure of whether the sample size is large enough
  • 95% CI
    • NOT about the parameter it is about the interval
    • does not tell you the range of values likely to contain the true mean

Frequentist vs Bayesian

Frequentist Bayesian
Probability Long-run frequency \(P(D|H)\) Degree of belief \(P(H|D)\)
Parameters Fixed, true Random, distribution
Obs. data One possible Fixed, true
Inferences Data Parameters

Frequentist vs Bayesian

n: 10
Slope: -0.1022
t: -2.3252
p: 0.0485

n: 10
Slope: -10.2318
t: -2.2115
p: 0.0579

n: 100
Slope: -10.4713
t: -6.6457
p: 1.7101362^{-9}

Frequentist vs Bayesian

Population A Population B
Percentage change 0.46 45.46
Prob. >5% decline 0 0.86

Bayesian Statistics

Bayesian

Bayes rule

\[ \begin{aligned} P(H\mid D) &= \frac{P(D\mid H) \times P(H)}{P(D)}\\[1em] \mathsf{posterior\\belief\\(probability)} &= \frac{likelihood \times \mathsf{prior~probability}}{\mathsf{normalizing~constant}} \end{aligned} \]

Bayesian

Bayes rule

\[ \begin{aligned} P(H\mid D) &= \frac{P(D\mid H) \times P(H)}{P(D)}\\ \mathsf{posterior\\belief\\(probability)} &= \frac{likelihood \times \mathsf{prior~probability}}{\mathsf{normalizing~constant}} \end{aligned} \]

The normalizing constant is required for probability - turn a frequency distribution into a probability distribution

Estimation: Likelihood

\(P(D\mid H)\)

Bayesian

  • conclusions pertain to hypotheses
  • computationally robust (sample size,balance,collinearity)
  • inferential flexibility - derive any number of inferences

Bayesian

  • subjectivity?

  • intractable \[P(H\mid D) = \frac{P(D\mid H) \times P(H)}{P(D)}\]

    \(P(D)\) - probability of data from all possible hypotheses

MCMC sampling

Marchov Chain Monte Carlo sampling

  • draw samples proportional to likelihood

  • two parameters \(\alpha\) and \(\beta\)
  • infinitely vague priors - posterior likelihood only
  • likelihood multivariate normal

MCMC sampling

Marchov Chain Monte Carlo sampling

  • draw samples proportional to likelihood

MCMC sampling

Marchov Chain Monte Carlo sampling

  • draw samples proportional to likelihood

MCMC sampling

Marchov Chain Monte Carlo sampling

  • chain of samples

MCMC sampling

Marchov Chain Monte Carlo sampling

  • 1000 samples

MCMC sampling

Marchov Chain Monte Carlo sampling

  • 10,000 samples

MCMC sampling

Marchov Chain Monte Carlo sampling

  • Aim: samples reflect posterior frequency distribution
  • samples used to construct posterior prob. dist.
  • the sharper the multidimensional “features” - more samples
  • chain should have traversed entire posterior
  • inital location should not influence

MCMC diagnostics

Trace plots

MCMC diagnostics

Autocorrelation

  • Summary stats on non-independent values are biased
  • Thinning factor = 1

MCMC diagnostics

Autocorrelation

  • Summary stats on non-independent values are biased
  • Thinning factor = 10

MCMC diagnostics

Autocorrelation

  • Summary stats on non-independent values are biased
  • Thinning factor = 10, n=10,000

MCMC diagnostics

Plot of Distributions

Sampler types

Metropolis-Hastings

http://twiecki.github.io/blog/2014/01/02/visualizing-mcmc/

https://chi-feng.github.io/mcmc-demo/app.html?algorithm=GibbsSampling&target=banana

Sampler types

Gibbs

Sampler types

NUTS

Sampling

  • thinning
  • burnin (warmup)
  • chains

Bayesian software (for R)

  • MCMCpack
  • winbugs (R2winbugs)
  • jags (R2jags)
  • stan (rstan, rstanarm, brms)

Bayesian software (for R)

  • https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
  • https://learnb4ss.github.io/learnB4SS/articles/install-brms.html