15 September 2024
Frequentist | Bayesian | |
---|---|---|
Probability | Long-run frequency \(P(D|H)\) | Degree of belief \(P(H|D)\) |
Parameters | Fixed, true | Random, distribution |
Obs. data | One possible | Fixed, true |
Inferences | Data | Parameters |
n: 10
Slope: -0.1022
t: -2.3252
p: 0.0485
n: 10
Slope: -10.2318
t: -2.2115
p: 0.0579
n: 100
Slope: -10.4713
t: -6.6457
p: 1.7101362^{-9}
Population A | Population B | |
---|---|---|
Percentage change | 0.46 | 45.46 |
Prob. >5% decline | 0 | 0.86 |
\[ \begin{aligned} P(H\mid D) &= \frac{P(D\mid H) \times P(H)}{P(D)}\\[1em] \mathsf{posterior\\belief\\(probability)} &= \frac{likelihood \times \mathsf{prior~probability}}{\mathsf{normalizing~constant}} \end{aligned} \]
\[ \begin{aligned} P(H\mid D) &= \frac{P(D\mid H) \times P(H)}{P(D)}\\ \mathsf{posterior\\belief\\(probability)} &= \frac{likelihood \times \mathsf{prior~probability}}{\mathsf{normalizing~constant}} \end{aligned} \]
The normalizing constant is required for probability - turn a frequency distribution into a probability distribution
\(P(D\mid H)\) |
subjectivity?
intractable \[P(H\mid D) = \frac{P(D\mid H) \times P(H)}{P(D)}\]
\(P(D)\) - probability of data from all possible hypotheses
Marchov Chain Monte Carlo sampling
Marchov Chain Monte Carlo sampling
Marchov Chain Monte Carlo sampling
Marchov Chain Monte Carlo sampling
Marchov Chain Monte Carlo sampling
Marchov Chain Monte Carlo sampling
Marchov Chain Monte Carlo sampling
Metropolis-Hastings
http://twiecki.github.io/blog/2014/01/02/visualizing-mcmc/
https://chi-feng.github.io/mcmc-demo/app.html?algorithm=GibbsSampling&target=banana
Gibbs
NUTS