15 September 2024
https://pcinereus.github.io/SUYRs_documents/
Day | Topic |
---|---|
1 | Intro to Version control (git), reproducible research (quarto) and setting up R environment |
2 | Introduction to Bayesian analyses and (generalized) linear models (GLM) |
3 | Day 2 continued - Bayesian GLM continued |
4 | Day 3 continued - Bayesian GLM continued |
5 | Bayesian generalized linear mixed effects models (GLMM) |
6 | Day 5 continued - Bayesian GLMM |
7 | Day 6 continued - Bayesian GLMM |
8 | Bayesian generalized additive models (GAM + GAMM) |
9 | Regression trees |
10 | Multivariate analyses |
https://github.com/rstudio/cheatsheets/raw/master/base-r.pdf
https://github.com/rstudio/cheatsheets/raw/master/rstudio-ide.pdf
install.packages("car") # for regression diagnostics
install.packages("ggfortify") # for model diagnostics
install.packages("DHARMa") # for model diagnostics
install.packages("see") # for model diagnostics
install.packages("lindia") # for diagnostics of lm and glm
install.packages("broom") # for consistent, tidy outputs
install.packages("knitr") # for knitting documents and code
install.packages("glmmTMB") # for model fitting
install.packages("effects") # for partial effects plots
install.packages("ggeffects") # for partial effects plots
install.packages("emmeans") # for estimating marginal means
install.packages("modelr") # for auxillary modelling functions
install.packages("performance") # for model diagnostics
install.packages("datawizard") # for data properties
install.packages("insight") # for model information
install.packages("sjPlot") # for outputs
install.packages("report") # for reporting methods/results
install.packages("easystats") # framework for stats, modelling and visualisation
install.packages("MuMIn") # for AIC and model selection
install.packages("MASS") # for old modelling routines
install.packages("patchwork") # for combining multiple plots together
install.packages("gam") # for GAM(M)s
install.packages("gratia") # for GAM(M) plots
install.packages("modelbased") # for model info
install.packages("broom.mixed") # for tidy outputs from mixed models
install.packages("car") # for regression diagnostics
install.packages("ggfortify") # for model diagnostics
install.packages("DHARMa") # for model diagnostics
install.packages("see") # for model diagnostics
install.packages("broom") # for consistent, tidy outputs
install.packages("knitr") # for knitting documents and code
install.packages("glmmTMB") # for model fitting
install.packages("effects") # for partial effects plots
install.packages("ggeffects") # for partial effects plots
install.packages("emmeans") # for estimating marginal means
install.packages("modelr") # for auxillary modelling functions
install.packages("performance") # for model diagnostics
install.packages("datawizard") # for data properties
install.packages("insight") # for model information
install.packages("sjPlot") # for outputs
install.packages("report") # for reporting methods/results
install.packages("easystats") # framework for stats, modelling and visualisation
install.packages("patchwork") # for combining multiple plots together
install.packages("modelbased") # for model info
install.packages("broom.mixed") # for tidy outputs from mixed models
install.packages("tidybayes") # for tidy outputs from mixed models
and then there is cmdstan
or rstan
and brms
….
base:::mean.default
knitr
and quarto
packageshttps://github.com/rstudio/cheatsheets/raw/master/rmarkdown-2.0.pdf
https://www.rstudio.com/resources/cheatsheets/
|>
)