29 May, 2022
----------------------------------------------------- Frequentist Bayesian -------------- ------------ ---------------- Probability Long-run frequency Degree of belief $P(D|H)$ $P(H|D)$ Parameters Fixed, true Random, distribution Obs. data One possible Fixed, true Inferences Data Parameters -----------------------------------------------------
n: 10 |
n: 10 |
n: 100 |
Population A | Population B | |
---|---|---|
Percentage change | 0.46 | 45.46 |
Prob. >5% decline | 0 | 0.86 |
\[ \begin{aligned} P(H\mid D) &= \frac{P(D\mid H) \times P(H)}{P(D)}\\[1em] \mathsf{posterior\\belief\\(probability)} &= \frac{likelihood \times \mathsf{prior~probability}}{\mathsf{normalizing~constant}} \end{aligned} \]
\[ \begin{aligned} P(H\mid D) &= \frac{P(D\mid H) \times P(H)}{P(D)}\\ \mathsf{posterior\\belief\\(probability)} &= \frac{likelihood \times \mathsf{prior~probability}}{\mathsf{normalizing~constant}} \end{aligned} \]
The normalizing constant is required for probability - turn a frequency distribution into a probability distribution
\(P(D\mid H)\) |
subjectivity?
intractable \[P(H\mid D) = \frac{P(D\mid H) \times P(H)}{P(D)}\]
\(P(D)\) - probability of data from all possible hypotheses
Marchov Chain Monte Carlo sampling
Marchov Chain Monte Carlo sampling
Marchov Chain Monte Carlo sampling
Marchov Chain Monte Carlo sampling
Marchov Chain Monte Carlo sampling
Marchov Chain Monte Carlo sampling
Marchov Chain Monte Carlo sampling
Metropolis-Hastings
Gibbs
NUTS