https://github.com/pcinereus/SUYRs_public
https://pcinereus.github.io/SUYRs_docs/
11 September, 2022
https://github.com/pcinereus/SUYRs_public
https://pcinereus.github.io/SUYRs_docs/
| Day | Topic |
|---|---|
| 1 | Intro to Version control (git), reproducible research (rmarkdown) and data wrangling |
| 2 | Data visualisation and Frequentist (generalized) linear models (GLM) |
| 3 | GLM continued + dealing with heterogeneity and autocorrelation |
| 4 | Day 3 continued + Frequentist mixed effects models |
| 5 | Frequentist generalized linear mixed effects models (GLMM) |
| 6 | More GLMM + Frequentist generalized additive models (GAM + GAMM) |
| 7 | GAMM + regression trees |
| 8 | Bayesian linear models |
| 9 | Bayesian generalized linear/generalized mixed effects |
| 10 | Multivariate analyses |
https://github.com/rstudio/cheatsheets/raw/master/base-r.pdf
https://github.com/rstudio/cheatsheets/raw/master/rstudio-ide.pdf
Keybindings: Cntl-Alt-K
install.packages("tidyverse")library("dplyr")
## ## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats': ## ## filter, lag
## The following objects are masked from 'package:base': ## ## intersect, setdiff, setequal, union
library("tidyverse")
## ── Attaching packages ──────────────────────────────────────────────────────────────────── tidyverse 1.3.2 ── ## ✔ ggplot2 3.3.6 ✔ purrr 0.3.4 ## ✔ tibble 3.1.8 ✔ stringr 1.4.1 ## ✔ tidyr 1.2.0 ✔ forcats 0.5.2 ## ✔ readr 2.1.2 ## ── Conflicts ─────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ── ## ✖ dplyr::filter() masks stats::filter() ## ✖ dplyr::lag() masks stats::lag()
stats::filter() dplyr::filter()
mean
## function (x, ...)
## UseMethod("mean")
## <bytecode: 0x5629982dead8>
## <environment: namespace:base>base:::mean.default
## function (x, trim = 0, na.rm = FALSE, ...)
## {
## if (!is.numeric(x) && !is.complex(x) && !is.logical(x)) {
## warning("argument is not numeric or logical: returning NA")
## return(NA_real_)
## }
## if (isTRUE(na.rm))
## x <- x[!is.na(x)]
## if (!is.numeric(trim) || length(trim) != 1L)
## stop("'trim' must be numeric of length one")
## n <- length(x)
## if (trim > 0 && n) {
## if (is.complex(x))
## stop("trimmed means are not defined for complex data")
## if (anyNA(x))
## return(NA_real_)
## if (trim >= 0.5)
## return(stats::median(x, na.rm = FALSE))
## lo <- floor(n * trim) + 1
## hi <- n + 1 - lo
## x <- sort.int(x, partial = unique(c(lo, hi)))[lo:hi]
## }
## .Internal(mean(x))
## }
## <bytecode: 0x56299b582c78>
## <environment: namespace:base>knitr and rmarkdown packageshttps://github.com/rstudio/cheatsheets/raw/master/rmarkdown-2.0.pdf