https://github.com/pcinereus/SUYRs_public
https://pcinereus.github.io/SUYRs_docs/
11 September, 2022
https://github.com/pcinereus/SUYRs_public
https://pcinereus.github.io/SUYRs_docs/
Day | Topic |
---|---|
1 | Intro to Version control (git), reproducible research (rmarkdown) and data wrangling |
2 | Data visualisation and Frequentist (generalized) linear models (GLM) |
3 | GLM continued + dealing with heterogeneity and autocorrelation |
4 | Day 3 continued + Frequentist mixed effects models |
5 | Frequentist generalized linear mixed effects models (GLMM) |
6 | More GLMM + Frequentist generalized additive models (GAM + GAMM) |
7 | GAMM + regression trees |
8 | Bayesian linear models |
9 | Bayesian generalized linear/generalized mixed effects |
10 | Multivariate analyses |
https://github.com/rstudio/cheatsheets/raw/master/base-r.pdf
https://github.com/rstudio/cheatsheets/raw/master/rstudio-ide.pdf
Keybindings: Cntl-Alt-K
install.packages("tidyverse")
library("dplyr")
## ## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats': ## ## filter, lag
## The following objects are masked from 'package:base': ## ## intersect, setdiff, setequal, union
library("tidyverse")
## ── Attaching packages ──────────────────────────────────────────────────────────────────── tidyverse 1.3.2 ── ## ✔ ggplot2 3.3.6 ✔ purrr 0.3.4 ## ✔ tibble 3.1.8 ✔ stringr 1.4.1 ## ✔ tidyr 1.2.0 ✔ forcats 0.5.2 ## ✔ readr 2.1.2 ## ── Conflicts ─────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ── ## ✖ dplyr::filter() masks stats::filter() ## ✖ dplyr::lag() masks stats::lag()
stats::filter() dplyr::filter()
mean
## function (x, ...) ## UseMethod("mean") ## <bytecode: 0x5629982dead8> ## <environment: namespace:base>
base:::mean.default
## function (x, trim = 0, na.rm = FALSE, ...) ## { ## if (!is.numeric(x) && !is.complex(x) && !is.logical(x)) { ## warning("argument is not numeric or logical: returning NA") ## return(NA_real_) ## } ## if (isTRUE(na.rm)) ## x <- x[!is.na(x)] ## if (!is.numeric(trim) || length(trim) != 1L) ## stop("'trim' must be numeric of length one") ## n <- length(x) ## if (trim > 0 && n) { ## if (is.complex(x)) ## stop("trimmed means are not defined for complex data") ## if (anyNA(x)) ## return(NA_real_) ## if (trim >= 0.5) ## return(stats::median(x, na.rm = FALSE)) ## lo <- floor(n * trim) + 1 ## hi <- n + 1 - lo ## x <- sort.int(x, partial = unique(c(lo, hi)))[lo:hi] ## } ## .Internal(mean(x)) ## } ## <bytecode: 0x56299b582c78> ## <environment: namespace:base>
knitr
and rmarkdown
packageshttps://github.com/rstudio/cheatsheets/raw/master/rmarkdown-2.0.pdf