06 May, 2022
Sp1 | Sp2 | Sp3 | Sp4 | |
---|---|---|---|---|
Site1 | 2 | 0 | 0 | 5 |
Site2 | 13 | 7 | 10 | 5 |
Site3 | 9 | 5 | 55 | 93 |
Site4 | 10 | 6 | 76 | 81 |
Site5 | 0 | 2 | 6 | 0 |
Sp1 | Sp2 | Sp3 | Sp4 | |
---|---|---|---|---|
Site1 | 2 | 0 | 0 | 5 |
Site2 | 13 | 7 | 10 | 5 |
Site3 | 9 | 5 | 55 | 93 |
Site4 | 10 | 6 | 76 | 81 |
Site5 | 0 | 2 | 6 | 0 |
var(Y)
## Sp1 Sp2 Sp3 Sp4 ## Sp1 30.70 15.00 96.35 117.70 ## Sp2 15.00 8.50 56.25 62.50 ## Sp3 96.35 56.25 1153.80 1477.85 ## Sp4 117.70 62.50 1477.85 2122.20
Sp1 | Sp2 | Sp3 | Sp4 | |
---|---|---|---|---|
Site1 | 2 | 0 | 0 | 5 |
Site2 | 13 | 7 | 10 | 5 |
Site3 | 9 | 5 | 55 | 93 |
Site4 | 10 | 6 | 76 | 81 |
Site5 | 0 | 2 | 6 | 0 |
cor(Y)
## Sp1 Sp2 Sp3 Sp4 ## Sp1 1.0000000 0.9285656 0.5119379 0.4611202 ## Sp2 0.9285656 1.0000000 0.5679993 0.4653475 ## Sp3 0.5119379 0.5679993 1.0000000 0.9444347 ## Sp4 0.4611202 0.4653475 0.9444347 1.0000000
|
Sites | Sp1 | Sp2 | Sp3 | Sp4 | Sp5 | Sp6 | Sp7 | Sp8 | Sp9 | Sp10 |
---|---|---|---|---|---|---|---|---|---|---|
Site1 | 5 | 0 | 0 | 65 | 5 | 0 | 0 | 0 | 0 | 0 |
Site2 | 0 | 0 | 0 | 25 | 39 | 0 | 6 | 23 | 0 | 0 |
Site3 | 0 | 0 | 0 | 6 | 42 | 0 | 6 | 31 | 0 | 0 |
Site4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 | 14 |
Site5 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 34 | 18 | 12 |
Site6 | 0 | 29 | 12 | 0 | 0 | 0 | 0 | 0 | 22 | 0 |
Site7 | 0 | 0 | 21 | 0 | 0 | 5 | 0 | 0 | 20 | 0 |
Site8 | 0 | 0 | 0 | 0 | 13 | 0 | 6 | 37 | 0 | 0 |
Site9 | 0 | 0 | 0 | 60 | 47 | 0 | 4 | 0 | 0 | 0 |
Site10 | 0 | 0 | 0 | 72 | 34 | 0 | 0 | 0 | 0 | 0 |
library(vegan) data.rda <- rda(data[,-1], scale=TRUE) summary(data.rda, scaling=2)
## ## Call: ## rda(X = data[, -1], scale = TRUE) ## ## Partitioning of correlations: ## Inertia Proportion ## Total 10 1 ## Unconstrained 10 1 ## ## Eigenvalues, and their contribution to the correlations ## ## Importance of components: ## PC1 PC2 PC3 PC4 PC5 ## Eigenvalue 3.8220 2.4205 1.6753 1.1701 0.66872 ## Proportion Explained 0.3822 0.2420 0.1675 0.1170 0.06687 ## Cumulative Proportion 0.3822 0.6243 0.7918 0.9088 0.97567 ## PC6 PC7 PC8 PC9 ## Eigenvalue 0.14643 0.067836 0.0280 0.0010446 ## Proportion Explained 0.01464 0.006784 0.0028 0.0001045 ## Cumulative Proportion 0.99031 0.997096 0.9999 1.0000000 ## ## Scaling 2 for species and site scores ## * Species are scaled proportional to eigenvalues ## * Sites are unscaled: weighted dispersion equal on all dimensions ## * General scaling constant of scores: 3.08007 ## ## ## Species scores ## ## PC1 PC2 PC3 PC4 PC5 PC6 ## Sp1 -0.1300 -0.494334 -0.63551 0.08911 -0.50512 0.112154 ## Sp2 0.5000 -0.157276 0.11701 -0.79900 -0.06343 -0.104375 ## Sp3 0.9007 -0.170843 0.27779 0.16895 -0.01456 0.038032 ## Sp4 -0.5235 -0.714165 -0.27820 0.04967 0.27670 0.027303 ## Sp5 -0.7564 -0.196662 0.47970 -0.01385 0.26323 0.128107 ## Sp6 0.6212 -0.213901 0.31704 0.63259 -0.04035 -0.101082 ## Sp7 -0.6311 0.231834 0.61283 -0.01782 -0.32040 0.085889 ## Sp8 -0.2207 0.925419 -0.04869 0.06432 -0.17279 0.006936 ## Sp9 0.9110 -0.009745 0.12221 -0.14486 0.05298 0.274048 ## Sp10 0.1964 0.702341 -0.54197 0.08330 0.30368 0.063979 ## ## ## Site scores (weighted sums of species scores) ## ## PC1 PC2 PC3 PC4 PC5 PC6 ## Site1 -0.38988 -1.4830 -1.9065 0.267341 -1.5154 0.3365 ## Site2 -0.88111 0.1838 0.8579 -0.024947 -0.2562 0.4380 ## Site3 -0.85013 0.5434 0.9979 -0.028670 -0.5856 0.4768 ## Site4 0.08351 1.5556 -1.2827 0.242057 0.5852 -1.5801 ## Site5 0.75662 1.2398 -0.8607 0.079914 0.6381 2.1217 ## Site6 1.50003 -0.4718 0.3510 -2.396989 -0.1903 -0.3131 ## Site7 1.86374 -0.6417 0.9511 1.897781 -0.1210 -0.3032 ## Site8 -0.53994 0.8632 0.5845 0.000059 -1.3634 -0.8814 ## Site9 -0.93105 -0.7920 0.5521 -0.042154 1.1052 0.5402 ## Site10 -0.61180 -0.9973 -0.2446 0.005608 1.7033 -0.8354
scores(data.rda, choices=1:4,display="species", scaling=0)
## PC1 PC2 PC3 PC4 ## Sp1 -0.06824908 -0.326218616 -0.50409421 0.08457936 ## Sp2 0.26258604 -0.103789073 0.09281608 -0.75834235 ## Sp3 0.47302827 -0.112742127 0.22034809 0.16035284 ## Sp4 -0.27494466 -0.471288231 -0.22067476 0.04713954 ## Sp5 -0.39723499 -0.129780438 0.38050677 -0.01314949 ## Sp6 0.32625468 -0.141156180 0.25148155 0.60040642 ## Sp7 -0.33140801 0.152990372 0.48610356 -0.01691299 ## Sp8 -0.11589293 0.610697873 -0.03862036 0.06104665 ## Sp9 0.47844118 -0.006430814 0.09693508 -0.13748918 ## Sp10 0.10312211 0.463485199 -0.42989602 0.07906481 ## attr(,"const") ## [1] 3.08007
scores(data.rda, choices=1:4,display="sites", scaling=0)
## PC1 PC2 PC3 PC4 ## Site1 -0.12658001 -0.48148365 -0.61898528 8.679697e-02 ## Site2 -0.28606925 0.05966779 0.27853408 -8.099421e-03 ## Site3 -0.27600945 0.17642036 0.32398109 -9.308103e-03 ## Site4 0.02711372 0.50505835 -0.41646556 7.858829e-02 ## Site5 0.24564899 0.40253243 -0.27942593 2.594538e-02 ## Site6 0.48701231 -0.15318789 0.11397034 -7.782255e-01 ## Site7 0.60509708 -0.20834002 0.30879819 6.161486e-01 ## Site8 -0.17530145 0.28025505 0.18975585 1.915695e-05 ## Site9 -0.30228092 -0.25712656 0.17925008 -1.368605e-02 ## Site10 -0.19863101 -0.32379586 -0.07941286 1.820656e-03 ## attr(,"const") ## [1] 3.08007
summary(data.rda, scaling=2)$species
## PC1 PC2 PC3 PC4 ## Sp1 -0.1299584 -0.494334499 -0.63550605 0.08911359 ## Sp2 0.5000107 -0.157276491 0.11701221 -0.79899645 ## Sp3 0.9007303 -0.170843477 0.27779043 0.16894923 ## Sp4 -0.5235437 -0.714165347 -0.27820226 0.04966665 ## Sp5 -0.7564064 -0.196662436 0.47970072 -0.01385442 ## Sp6 0.6212472 -0.213900635 0.31704004 0.63259371 ## Sp7 -0.6310600 0.231833546 0.61282545 -0.01781968 ## Sp8 -0.2206808 0.925419372 -0.04868826 0.06431931 ## Sp9 0.9110374 -0.009744917 0.12220500 -0.14485986 ## Sp10 0.1963629 0.702341045 -0.54196521 0.08330341 ## PC5 PC6 ## Sp1 -0.50512223 0.112154283 ## Sp2 -0.06343012 -0.104375378 ## Sp3 -0.01455567 0.038032290 ## Sp4 0.27669707 0.027303319 ## Sp5 0.26323433 0.128106871 ## Sp6 -0.04034569 -0.101081509 ## Sp7 -0.32040479 0.085888650 ## Sp8 -0.17279101 0.006935947 ## Sp9 0.05297717 0.274047718 ## Sp10 0.30367672 0.063978952
summary(data.rda, scaling=1)$species
## PC1 PC2 PC3 PC4 ## Sp1 -0.2102120 -1.00477627 -1.5526456 0.26051036 ## Sp2 0.8087835 -0.31967764 0.2858800 -2.33574773 ## Sp3 1.4569603 -0.34725367 0.6786876 0.49389803 ## Sp4 -0.8468489 -1.45160088 -0.6796938 0.14519308 ## Sp5 -1.2235117 -0.39973287 1.1719876 -0.04050134 ## Sp6 1.0048873 -0.43477095 0.7745809 1.84929399 ## Sp7 -1.0207599 0.47122110 1.4972331 -0.05209320 ## Sp8 -0.3569584 1.88099237 -0.1189534 0.18802797 ## Sp9 1.4736325 -0.01980736 0.2985669 -0.42347634 ## Sp10 0.3176233 1.42756699 -1.3241099 0.24352519 ## PC5 PC6 ## Sp1 -1.95331854 0.92683727 ## Sp2 -0.24528563 -0.86255279 ## Sp3 -0.05628709 0.31429690 ## Sp4 1.06999353 0.22563323 ## Sp5 1.01793280 1.05866864 ## Sp6 -0.15601764 -0.83533243 ## Sp7 -1.23901222 0.70977941 ## Sp8 -0.66818654 0.05731831 ## Sp9 0.20486387 2.26471634 ## Sp10 1.17432441 0.52871879
summary(data.rda, scaling=2)$sites
## PC1 PC2 PC3 PC4 ## Site1 -0.38987532 -1.4830035 -1.9065182 2.673408e-01 ## Site2 -0.88111339 0.1837810 0.8579046 -2.494679e-02 ## Site3 -0.85012850 0.5433871 0.9978845 -2.866961e-02 ## Site4 0.08351215 1.5556152 -1.2827432 2.420575e-01 ## Site5 0.75661614 1.2398282 -0.8606515 7.991361e-02 ## Site6 1.50003214 -0.4718295 0.3510366 -2.396989e+00 ## Site7 1.86374152 -0.6417019 0.9511201 1.897781e+00 ## Site8 -0.53994078 0.8632053 0.5844614 5.900474e-05 ## Site9 -0.93104649 -0.7919679 0.5521028 -4.215398e-02 ## Site10 -0.61179747 -0.9973140 -0.2445972 5.607748e-03 ## PC5 PC6 ## Site1 -1.5153667 0.3364629 ## Site2 -0.2561519 0.4380054 ## Site3 -0.5855919 0.4768201 ## Site4 0.5851709 -1.5800521 ## Site5 0.6380907 2.1216597 ## Site6 -0.1902904 -0.3131261 ## Site7 -0.1210371 -0.3032445 ## Site8 -1.3633582 -0.8813587 ## Site9 1.1052341 0.5401866 ## Site10 1.7033003 -0.8353532
summary(data.rda, scaling=1)$sites
## PC1 PC2 PC3 PC4 ## Site1 -0.24103094 -0.72961495 -0.7803480 9.145008e-02 ## Site2 -0.54472693 0.09041742 0.3511449 -8.533624e-03 ## Site3 -0.52557128 0.26733811 0.4084394 -9.807103e-03 ## Site4 0.05162936 0.76533880 -0.5250336 8.280135e-02 ## Site5 0.46775954 0.60997643 -0.3522692 2.733629e-02 ## Site6 0.92735841 -0.23213286 0.1436812 -8.199456e-01 ## Site7 1.15221289 -0.31570749 0.3892985 6.491799e-01 ## Site8 -0.33380527 0.42468374 0.2392231 2.018393e-05 ## Site9 -0.57559686 -0.38963603 0.2259786 -1.441974e-02 ## Site10 -0.37822892 -0.49066318 -0.1001149 1.918260e-03 ## PC5 PC6 ## Site1 -0.39186922 0.04071454 ## Site2 -0.06624011 0.05300195 ## Site3 -0.15143228 0.05769882 ## Site4 0.15132341 -0.19119820 ## Site5 0.16500833 0.25673679 ## Site6 -0.04920851 -0.03789062 ## Site7 -0.03129982 -0.03669487 ## Site8 -0.35256027 -0.10665104 ## Site9 0.28581018 0.06536664 ## Site10 0.44046828 -0.10108402
## PC1 PC2 PC3 PC4 PC5 ## 3.822030054 2.420488947 1.675308207 1.170140005 0.668723871 ## PC6 PC7 PC8 PC9 ## 0.146428210 0.067836468 0.027999675 0.001044563
## PC1 PC2 PC3 PC4 PC5 ## 3.822030054 2.420488947 1.675308207 1.170140005 0.668723871 ## PC6 PC7 PC8 PC9 ## 0.146428210 0.067836468 0.027999675 0.001044563
## PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 ## 38.22 62.43 79.18 90.88 97.57 99.03 99.71 99.99 ## PC9 ## 100.00
## PC1 PC2 PC3 PC4 PC5 ## 3.822030054 2.420488947 1.675308207 1.170140005 0.668723871 ## PC6 PC7 PC8 PC9 ## 0.146428210 0.067836468 0.027999675 0.001044563
## PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 ## 38.22 62.43 79.18 90.88 97.57 99.03 99.71 99.99 ## PC9 ## 100.00
plot(data.rda)
Site | pH | Slope | Pressure | Altitude | Substrate |
---|---|---|---|---|---|
Site1 | 6 | 4 | 101325 | 2 | Quartz |
Site2 | 7 | 9 | 101352 | 510 | Shale |
Site3 | 7 | 9 | 101356 | 546 | Shale |
Site4 | 7 | 7 | 101372 | 758 | Shale |
Site5 | 7 | 6 | 101384 | 813 | Shale |
Site6 | 8 | 8 | 101395 | 856 | Quartz |
Site7 | 8 | 0 | 101396 | 854 | Quartz |
Site8 | 7 | 12 | 101370 | 734 | Shale |
Site9 | 8 | 8 | 101347 | 360 | Quartz |
Site10 | 6 | 2 | 101345 | 356 | Quartz |
library(car) vif(lm(data.rda$CA$u[,1]~Slope+Altitude+Pressure+ Substrate+pH, data=enviro))
## Slope Altitude Pressure Substrate pH ## 2.187796 52.754368 45.804821 5.118418 1.976424
library(car) vif(lm(data.rda$CA$u[,1]~Slope+Altitude+Pressure+ Substrate+pH, data=enviro))
## Slope Altitude Pressure Substrate pH ## 2.187796 52.754368 45.804821 5.118418 1.976424
vif(lm(data.rda$CA$u[,1]~Slope+Altitude+Substrate+ pH, data=enviro))
## Slope Altitude Substrate pH ## 2.116732 1.830014 2.636302 1.968157
Three responses
data.lm<-lm(data.rda$CA$u[,1:3]~Slope+Altitude+Substrate+ pH, data=enviro)
summary(data.lm)[[1]]$coef
## Estimate Std. Error t value ## (Intercept) 0.180787455 0.8121647657 0.2225995 ## Slope -0.021324431 0.0259195942 -0.8227147 ## Altitude 0.001127743 0.0003074246 3.6683553 ## SubstrateShale -0.326063277 0.1951991407 -1.6704135 ## pH -0.075386061 0.1322828004 -0.5698856 ## Pr(>|t|) ## (Intercept) 0.83265462 ## Slope 0.44811475 ## Altitude 0.01446816 ## SubstrateShale 0.15570393 ## pH 0.59340544
summary(data.lm)[[1]]$coef
## Estimate Std. Error t value ## (Intercept) 0.180787455 0.8121647657 0.2225995 ## Slope -0.021324431 0.0259195942 -0.8227147 ## Altitude 0.001127743 0.0003074246 3.6683553 ## SubstrateShale -0.326063277 0.1951991407 -1.6704135 ## pH -0.075386061 0.1322828004 -0.5698856 ## Pr(>|t|) ## (Intercept) 0.83265462 ## Slope 0.44811475 ## Altitude 0.01446816 ## SubstrateShale 0.15570393 ## pH 0.59340544
summary(data.lm)[[2]]$coef
## Estimate Std. Error t value ## (Intercept) -0.8361050965 0.513155076 -1.6293420 ## Slope -0.0074535542 0.016376937 -0.4551250 ## Altitude 0.0003381004 0.000194242 1.7406140 ## SubstrateShale 0.5480944974 0.123333878 4.4439898 ## pH 0.0589810882 0.083581058 0.7056753 ## Pr(>|t|) ## (Intercept) 0.164169419 ## Slope 0.668099646 ## Altitude 0.142232378 ## SubstrateShale 0.006739835 ## pH 0.511901060
summary(data.lm)[[1]]$coef
## Estimate Std. Error t value ## (Intercept) 0.180787455 0.8121647657 0.2225995 ## Slope -0.021324431 0.0259195942 -0.8227147 ## Altitude 0.001127743 0.0003074246 3.6683553 ## SubstrateShale -0.326063277 0.1951991407 -1.6704135 ## pH -0.075386061 0.1322828004 -0.5698856 ## Pr(>|t|) ## (Intercept) 0.83265462 ## Slope 0.44811475 ## Altitude 0.01446816 ## SubstrateShale 0.15570393 ## pH 0.59340544
summary(data.lm)[[2]]$coef
## Estimate Std. Error t value ## (Intercept) -0.8361050965 0.513155076 -1.6293420 ## Slope -0.0074535542 0.016376937 -0.4551250 ## Altitude 0.0003381004 0.000194242 1.7406140 ## SubstrateShale 0.5480944974 0.123333878 4.4439898 ## pH 0.0589810882 0.083581058 0.7056753 ## Pr(>|t|) ## (Intercept) 0.164169419 ## Slope 0.668099646 ## Altitude 0.142232378 ## SubstrateShale 0.006739835 ## pH 0.511901060
summary(data.lm)[[3]]$coef
## Estimate Std. Error t value ## (Intercept) -1.1148132894 1.6441465097 -0.6780498 ## Slope 0.0225742272 0.0524716316 0.4302177 ## Altitude 0.0003341175 0.0006223505 0.5368638 ## SubstrateShale -0.0908322738 0.3951611784 -0.2298613 ## pH 0.1162957219 0.2677933269 0.4342742 ## Pr(>|t|) ## (Intercept) 0.5278434 ## Slope 0.6849494 ## Altitude 0.6143806 ## SubstrateShale 0.8273072 ## pH 0.6821907
Sites | Sp1 | Sp2 | Sp3 | Sp4 | Sp5 | Sp6 | Sp7 | Sp8 | Sp9 | Sp10 |
---|---|---|---|---|---|---|---|---|---|---|
Site1 | 5 | 0 | 0 | 65 | 5 | 0 | 0 | 0 | 0 | 0 |
Site2 | 0 | 0 | 0 | 25 | 39 | 0 | 6 | 23 | 0 | 0 |
Site3 | 0 | 0 | 0 | 6 | 42 | 0 | 6 | 31 | 0 | 0 |
Site4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 | 14 |
Site5 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 34 | 18 | 12 |
Site6 | 0 | 29 | 12 | 0 | 0 | 0 | 0 | 0 | 22 | 0 |
Site7 | 0 | 0 | 21 | 0 | 0 | 5 | 0 | 0 | 20 | 0 |
Site8 | 0 | 0 | 0 | 0 | 13 | 0 | 6 | 37 | 0 | 0 |
Site9 | 0 | 0 | 0 | 60 | 47 | 0 | 4 | 0 | 0 | 0 |
Site10 | 0 | 0 | 0 | 72 | 34 | 0 | 0 | 0 | 0 | 0 |
Sites | Sp1 | Sp2 | Sp3 | Sp4 | Sp5 | Sp6 | Sp7 | Sp8 | Sp9 | Sp10 |
---|---|---|---|---|---|---|---|---|---|---|
Site1 | 5 | 0 | 0 | 65 | 5 | 0 | 0 | 0 | 0 | 0 |
Site2 | 0 | 0 | 0 | 25 | 39 | 0 | 6 | 23 | 0 | 0 |
Site3 | 0 | 0 | 0 | 6 | 42 | 0 | 6 | 31 | 0 | 0 |
Site4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 | 14 |
Site5 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 34 | 18 | 12 |
Site6 | 0 | 29 | 12 | 0 | 0 | 0 | 0 | 0 | 22 | 0 |
Site7 | 0 | 0 | 21 | 0 | 0 | 5 | 0 | 0 | 20 | 0 |
Site8 | 0 | 0 | 0 | 0 | 13 | 0 | 6 | 37 | 0 | 0 |
Site9 | 0 | 0 | 0 | 60 | 47 | 0 | 4 | 0 | 0 | 0 |
Site10 | 0 | 0 | 0 | 72 | 34 | 0 | 0 | 0 | 0 | 0 |
Site | pH | Slope | Pressure | Altitude | Substrate |
---|---|---|---|---|---|
Site1 | 6 | 4 | 101325 | 2 | Quartz |
Site2 | 7 | 9 | 101352 | 510 | Shale |
Site3 | 7 | 9 | 101356 | 546 | Shale |
Site4 | 7 | 7 | 101372 | 758 | Shale |
Site5 | 7 | 6 | 101384 | 813 | Shale |
Site6 | 8 | 8 | 101395 | 856 | Quartz |
Site7 | 8 | 0 | 101396 | 854 | Quartz |
Site8 | 7 | 12 | 101370 | 734 | Shale |
Site9 | 8 | 8 | 101347 | 360 | Quartz |
Site10 | 6 | 2 | 101345 | 356 | Quartz |
## ## Call: ## rda(formula = data.sp ~ Slope + Altitude + Substrate + pH, data = enviro, scale = TRUE) ## ## Partitioning of correlations: ## Inertia Proportion ## Total 10.000 1.0000 ## Constrained 6.803 0.6803 ## Unconstrained 3.197 0.3197 ## ## Eigenvalues, and their contribution to the correlations ## ## Importance of components: ## RDA1 RDA2 RDA3 RDA4 PC1 ## Eigenvalue 3.2736 2.3246 0.94753 0.25721 1.6686 ## Proportion Explained 0.3274 0.2325 0.09475 0.02572 0.1669 ## Cumulative Proportion 0.3274 0.5598 0.65457 0.68029 0.8471 ## PC2 PC3 PC4 PC5 ## Eigenvalue 0.98370 0.42545 0.085455 0.033927 ## Proportion Explained 0.09837 0.04255 0.008546 0.003393 ## Cumulative Proportion 0.94552 0.98806 0.996607 1.000000 ## ## Accumulated constrained eigenvalues ## Importance of components: ## RDA1 RDA2 RDA3 RDA4 ## Eigenvalue 3.2736 2.3246 0.9475 0.25721 ## Proportion Explained 0.4812 0.3417 0.1393 0.03781 ## Cumulative Proportion 0.4812 0.8229 0.9622 1.00000 ## ## Scaling 2 for species and site scores ## * Species are scaled proportional to eigenvalues ## * Sites are unscaled: weighted dispersion equal on all dimensions ## * General scaling constant of scores: 3.08007 ## ## ## Species scores ## ## RDA1 RDA2 RDA3 RDA4 PC1 PC2 ## Sp1 -0.4625 0.53068 -0.06866 0.253791 -0.45077 -0.42289 ## Sp2 0.4496 0.17767 0.70674 0.047286 -0.20609 0.09076 ## Sp3 0.8605 0.14459 -0.07160 -0.073481 0.01511 -0.39443 ## Sp4 -0.5038 0.73807 -0.17492 -0.053209 0.09486 0.28160 ## Sp5 -0.5412 0.06265 -0.02421 -0.300536 0.66564 0.28803 ## Sp6 0.6378 0.16243 -0.37542 -0.090719 0.25610 -0.50570 ## Sp7 -0.5134 -0.42926 0.28574 -0.206257 0.58746 -0.17367 ## Sp8 -0.1998 -0.91143 -0.04662 0.156707 -0.11938 0.04756 ## Sp9 0.8211 0.01396 0.04385 -0.058407 -0.23106 -0.21288 ## Sp10 0.1332 -0.53007 -0.36293 0.008524 -0.63767 0.30795 ## ## ## Site scores (weighted sums of species scores) ## ## RDA1 RDA2 RDA3 RDA4 PC1 ## Site Site1 -0.79327 1.6804 -0.57398 3.8613 -1.3523 ## Site Site2 -0.83161 -0.4019 0.46703 -2.1620 1.0017 ## Site Site3 -0.78597 -0.7893 0.56036 -1.9250 1.0466 ## Site Site4 0.03055 -1.3306 -1.05657 2.8638 -1.2801 ## Site Site5 0.75712 -1.0386 -0.86818 1.9420 -1.2800 ## Site Site6 1.58269 0.5814 2.55098 0.9117 -0.6183 ## Site Site7 2.06536 0.6400 -1.36534 -1.2030 0.7683 ## Site Site8 -0.52322 -1.0342 0.62009 0.1174 0.5119 ## Site Site9 -0.88977 0.6559 0.08146 -3.1438 0.1980 ## Site Site10 -0.61188 1.0369 -0.41586 -1.2624 1.0043 ## PC2 ## Site Site1 -1.2687 ## Site Site2 -0.3103 ## Site Site3 -0.2950 ## Site Site4 0.9220 ## Site Site5 0.2638 ## Site Site6 0.2723 ## Site Site7 -1.5171 ## Site Site8 -0.5805 ## Site Site9 0.5848 ## Site Site10 1.9287 ## ## ## Site constraints (linear combinations of constraining variables) ## ## RDA1 RDA2 RDA3 RDA4 PC1 ## Site Site1 -1.3876 1.5920 -0.20599 0.7614 -1.3523 ## Site Site2 -0.8984 -0.7156 0.06891 0.3099 1.0017 ## Site Site3 -0.7330 -0.7750 -0.18965 0.1650 1.0466 ## Site Site4 0.1311 -1.0148 -0.39673 0.1773 -1.2801 ## Site Site5 0.4262 -1.1215 -1.11563 -0.1698 -1.2800 ## Site Site6 1.3488 0.5330 2.12023 0.1419 -0.6183 ## Site Site7 1.9135 0.4873 -1.12627 -0.2722 0.7683 ## Site Site8 -0.2790 -0.9677 1.35583 0.3537 0.5119 ## Site Site9 -0.6631 0.7367 0.11148 -2.6608 0.1980 ## Site Site10 0.1414 1.2455 -0.62218 1.1935 1.0043 ## PC2 ## Site Site1 -1.2687 ## Site Site2 -0.3103 ## Site Site3 -0.2950 ## Site Site4 0.9220 ## Site Site5 0.2638 ## Site Site6 0.2723 ## Site Site7 -1.5171 ## Site Site8 -0.5805 ## Site Site9 0.5848 ## Site Site10 1.9287 ## ## ## Biplot scores for constraining variables ## ## RDA1 RDA2 RDA3 RDA4 PC1 PC2 ## Slope -0.4012 -0.5892 0.66815 -0.21310 0 0 ## Altitude 0.7686 -0.6192 0.15152 -0.05368 0 0 ## SubstrateShale -0.2779 -0.9434 -0.05693 0.17170 0 0 ## pH 0.3768 -0.1196 0.18204 -0.90031 0 0 ## ## ## Centroids for factor constraints ## ## RDA1 RDA2 RDA3 RDA4 PC1 PC2 ## SubstrateQuartz 0.2706 0.9189 0.05545 -0.1672 0 0 ## SubstrateShale -0.2706 -0.9189 -0.05545 0.1672 0 0
summary(data.rda, scaling=2)$biplot
## RDA1 RDA2 RDA3 ## Slope -0.4012090 -0.5892359 0.66814874 ## Altitude 0.7686367 -0.6191599 0.15151633 ## SubstrateShale -0.2778501 -0.9434386 -0.05693409 ## pH 0.3768405 -0.1195525 0.18203818 ## RDA4 PC1 PC2 ## Slope -0.21309525 0 0 ## Altitude -0.05367921 0 0 ## SubstrateShale 0.17170182 0 0 ## pH -0.90031137 0 0
Permutation ANOVA
## Permutation test for rda under reduced model ## Permutation: free ## Number of permutations: 999 ## ## Model: rda(formula = data.sp ~ Slope + Altitude + Substrate + pH, data = enviro, scale = TRUE) ## Df Variance F Pr(>F) ## Model 4 6.8029 2.6598 0.003 ** ## Residual 5 3.1971 ## --- ## Signif. codes: ## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Permutation ANOVA (Type III SS)
## Permutation test for rda under reduced model ## Marginal effects of terms ## Permutation: free ## Number of permutations: 999 ## ## Model: rda(formula = data.sp ~ Slope + Altitude + Substrate + pH, data = enviro, scale = TRUE) ## Df Variance F Pr(>F) ## Slope 1 1.0065 1.5741 0.177 ## Altitude 1 2.2199 3.4718 0.006 ** ## Substrate 1 1.5685 2.4531 0.043 * ## pH 1 0.4273 0.6683 0.697 ## Residual 5 3.1971 ## --- ## Signif. codes: ## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Stepwise model selection
## Df AIC F Pr(>F) ## <none> 20.569 ## Slope 1 21.306 1.5741 0.17 ## Altitude 1 23.842 3.4718 0.01 ** ## Substrate 1 22.561 2.4531 0.04 * ## pH 1 19.823 0.6683 0.69 ## --- ## Signif. codes: ## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
PCA
data <- decostand(data[,-1],method="total",MARGIN=2) data
## Sp1 Sp2 Sp3 Sp4 Sp5 Sp6 ## Site1 1 0 0.0000000 0.28508772 0.02777778 0 ## Site2 0 0 0.0000000 0.10964912 0.21666667 0 ## Site3 0 0 0.0000000 0.02631579 0.23333333 0 ## Site4 0 0 0.0000000 0.00000000 0.00000000 0 ## Site5 0 0 0.1538462 0.00000000 0.00000000 0 ## Site6 0 1 0.3076923 0.00000000 0.00000000 0 ## Site7 0 0 0.5384615 0.00000000 0.00000000 1 ## Site8 0 0 0.0000000 0.00000000 0.07222222 0 ## Site9 0 0 0.0000000 0.26315789 0.26111111 0 ## Site10 0 0 0.0000000 0.31578947 0.18888889 0 ## Sp7 Sp8 Sp9 Sp10 ## Site1 0.0000000 0.0000000 0.0000000 0.0000000 ## Site2 0.2727273 0.1393939 0.0000000 0.0000000 ## Site3 0.2727273 0.1878788 0.0000000 0.0000000 ## Site4 0.0000000 0.2424242 0.0000000 0.5384615 ## Site5 0.0000000 0.2060606 0.3000000 0.4615385 ## Site6 0.0000000 0.0000000 0.3666667 0.0000000 ## Site7 0.0000000 0.0000000 0.3333333 0.0000000 ## Site8 0.2727273 0.2242424 0.0000000 0.0000000 ## Site9 0.1818182 0.0000000 0.0000000 0.0000000 ## Site10 0.0000000 0.0000000 0.0000000 0.0000000
Minimize \(\chi^2\) residuals
data.ca <- cca(data) summary(data.ca)
## ## Call: ## cca(X = data) ## ## Partitioning of scaled Chi-square: ## Inertia Proportion ## Total 3.256 1 ## Unconstrained 3.256 1 ## ## Eigenvalues, and their contribution to the scaled Chi-square ## ## Importance of components: ## CA1 CA2 CA3 CA4 CA5 ## Eigenvalue 0.9463 0.7823 0.6214 0.5784 0.26286 ## Proportion Explained 0.2906 0.2403 0.1909 0.1776 0.08073 ## Cumulative Proportion 0.2906 0.5309 0.7217 0.8994 0.98009 ## CA6 CA7 CA8 ## Eigenvalue 0.04315 0.015511 0.006164 ## Proportion Explained 0.01325 0.004764 0.001893 ## Cumulative Proportion 0.99334 0.998107 1.000000 ## ## Scaling 2 for species and site scores ## * Species are scaled proportional to eigenvalues ## * Sites are unscaled: weighted dispersion equal on all dimensions ## ## ## Species scores ## ## CA1 CA2 CA3 CA4 CA5 CA6 ## Sp1 -1.4446 1.8842 -0.86530 0.03061 -0.47720 -0.006432 ## Sp2 1.1313 0.5380 0.52836 1.74914 -0.05360 0.247953 ## Sp3 1.0302 0.3407 0.16160 -0.32148 0.00978 -0.135905 ## Sp4 -1.1395 0.2409 0.47543 -0.02254 1.06125 0.022650 ## Sp5 -0.9094 -0.6375 0.85632 -0.03372 0.35896 -0.014035 ## Sp6 1.1250 0.5162 0.37542 -1.61102 -0.05869 0.265755 ## Sp7 -0.7780 -0.9688 0.78276 -0.02684 -0.79494 -0.033065 ## Sp8 -0.2565 -1.0628 -0.43367 0.02821 -0.55703 0.053469 ## Sp9 0.9388 0.1688 -0.07722 0.11955 0.07364 -0.513328 ## Sp10 0.3026 -1.0196 -1.80371 0.08808 0.43783 0.112936 ## ## ## Site scores (weighted averages of species scores) ## ## CA1 CA2 CA3 CA4 CA5 CA6 ## Site1 -1.4446 1.8842 -0.8653 0.03061 -0.47720 -0.006432 ## Site2 -0.8156 -0.9072 0.8514 -0.03082 -0.51678 -0.066579 ## Site3 -0.7373 -1.0761 0.7693 -0.02515 -1.10800 -0.053106 ## Site4 0.1364 -1.3205 -2.2180 0.12014 0.49068 2.189249 ## Site5 0.4965 -0.6686 -1.3203 0.05068 0.37618 -2.309429 ## Site6 1.1313 0.5380 0.5284 1.74914 -0.05360 0.247953 ## Site7 1.1250 0.5162 0.3754 -1.61102 -0.05869 0.265755 ## Site8 -0.6227 -1.2320 0.5034 -0.01041 -2.11065 0.079747 ## Site9 -1.0159 -0.5055 1.1190 -0.04803 1.23098 -0.121948 ## Site10 -1.1131 -0.1123 0.9944 -0.04620 3.03739 0.206699
data.ca <- cca(data) summary(data.ca)
## ## Call: ## cca(X = data) ## ## Partitioning of scaled Chi-square: ## Inertia Proportion ## Total 3.256 1 ## Unconstrained 3.256 1 ## ## Eigenvalues, and their contribution to the scaled Chi-square ## ## Importance of components: ## CA1 CA2 CA3 CA4 CA5 ## Eigenvalue 0.9463 0.7823 0.6214 0.5784 0.26286 ## Proportion Explained 0.2906 0.2403 0.1909 0.1776 0.08073 ## Cumulative Proportion 0.2906 0.5309 0.7217 0.8994 0.98009 ## CA6 CA7 CA8 ## Eigenvalue 0.04315 0.015511 0.006164 ## Proportion Explained 0.01325 0.004764 0.001893 ## Cumulative Proportion 0.99334 0.998107 1.000000 ## ## Scaling 2 for species and site scores ## * Species are scaled proportional to eigenvalues ## * Sites are unscaled: weighted dispersion equal on all dimensions ## ## ## Species scores ## ## CA1 CA2 CA3 CA4 CA5 CA6 ## Sp1 -1.4446 1.8842 -0.86530 0.03061 -0.47720 -0.006432 ## Sp2 1.1313 0.5380 0.52836 1.74914 -0.05360 0.247953 ## Sp3 1.0302 0.3407 0.16160 -0.32148 0.00978 -0.135905 ## Sp4 -1.1395 0.2409 0.47543 -0.02254 1.06125 0.022650 ## Sp5 -0.9094 -0.6375 0.85632 -0.03372 0.35896 -0.014035 ## Sp6 1.1250 0.5162 0.37542 -1.61102 -0.05869 0.265755 ## Sp7 -0.7780 -0.9688 0.78276 -0.02684 -0.79494 -0.033065 ## Sp8 -0.2565 -1.0628 -0.43367 0.02821 -0.55703 0.053469 ## Sp9 0.9388 0.1688 -0.07722 0.11955 0.07364 -0.513328 ## Sp10 0.3026 -1.0196 -1.80371 0.08808 0.43783 0.112936 ## ## ## Site scores (weighted averages of species scores) ## ## CA1 CA2 CA3 CA4 CA5 CA6 ## Site1 -1.4446 1.8842 -0.8653 0.03061 -0.47720 -0.006432 ## Site2 -0.8156 -0.9072 0.8514 -0.03082 -0.51678 -0.066579 ## Site3 -0.7373 -1.0761 0.7693 -0.02515 -1.10800 -0.053106 ## Site4 0.1364 -1.3205 -2.2180 0.12014 0.49068 2.189249 ## Site5 0.4965 -0.6686 -1.3203 0.05068 0.37618 -2.309429 ## Site6 1.1313 0.5380 0.5284 1.74914 -0.05360 0.247953 ## Site7 1.1250 0.5162 0.3754 -1.61102 -0.05869 0.265755 ## Site8 -0.6227 -1.2320 0.5034 -0.01041 -2.11065 0.079747 ## Site9 -1.0159 -0.5055 1.1190 -0.04803 1.23098 -0.121948 ## Site10 -1.1131 -0.1123 0.9944 -0.04620 3.03739 0.206699
Inertia - \(\chi^2\) value
data.ca <- cca(data) summary(data.ca)
## ## Call: ## cca(X = data) ## ## Partitioning of scaled Chi-square: ## Inertia Proportion ## Total 3.256 1 ## Unconstrained 3.256 1 ## ## Eigenvalues, and their contribution to the scaled Chi-square ## ## Importance of components: ## CA1 CA2 CA3 CA4 CA5 ## Eigenvalue 0.9463 0.7823 0.6214 0.5784 0.26286 ## Proportion Explained 0.2906 0.2403 0.1909 0.1776 0.08073 ## Cumulative Proportion 0.2906 0.5309 0.7217 0.8994 0.98009 ## CA6 CA7 CA8 ## Eigenvalue 0.04315 0.015511 0.006164 ## Proportion Explained 0.01325 0.004764 0.001893 ## Cumulative Proportion 0.99334 0.998107 1.000000 ## ## Scaling 2 for species and site scores ## * Species are scaled proportional to eigenvalues ## * Sites are unscaled: weighted dispersion equal on all dimensions ## ## ## Species scores ## ## CA1 CA2 CA3 CA4 CA5 CA6 ## Sp1 -1.4446 1.8842 -0.86530 0.03061 -0.47720 -0.006432 ## Sp2 1.1313 0.5380 0.52836 1.74914 -0.05360 0.247953 ## Sp3 1.0302 0.3407 0.16160 -0.32148 0.00978 -0.135905 ## Sp4 -1.1395 0.2409 0.47543 -0.02254 1.06125 0.022650 ## Sp5 -0.9094 -0.6375 0.85632 -0.03372 0.35896 -0.014035 ## Sp6 1.1250 0.5162 0.37542 -1.61102 -0.05869 0.265755 ## Sp7 -0.7780 -0.9688 0.78276 -0.02684 -0.79494 -0.033065 ## Sp8 -0.2565 -1.0628 -0.43367 0.02821 -0.55703 0.053469 ## Sp9 0.9388 0.1688 -0.07722 0.11955 0.07364 -0.513328 ## Sp10 0.3026 -1.0196 -1.80371 0.08808 0.43783 0.112936 ## ## ## Site scores (weighted averages of species scores) ## ## CA1 CA2 CA3 CA4 CA5 CA6 ## Site1 -1.4446 1.8842 -0.8653 0.03061 -0.47720 -0.006432 ## Site2 -0.8156 -0.9072 0.8514 -0.03082 -0.51678 -0.066579 ## Site3 -0.7373 -1.0761 0.7693 -0.02515 -1.10800 -0.053106 ## Site4 0.1364 -1.3205 -2.2180 0.12014 0.49068 2.189249 ## Site5 0.4965 -0.6686 -1.3203 0.05068 0.37618 -2.309429 ## Site6 1.1313 0.5380 0.5284 1.74914 -0.05360 0.247953 ## Site7 1.1250 0.5162 0.3754 -1.61102 -0.05869 0.265755 ## Site8 -0.6227 -1.2320 0.5034 -0.01041 -2.11065 0.079747 ## Site9 -1.0159 -0.5055 1.1190 -0.04803 1.23098 -0.121948 ## Site10 -1.1131 -0.1123 0.9944 -0.04620 3.03739 0.206699
Eigenvalues - component of \(\chi^2\)
data.ca$CA$eig
## CA1 CA2 CA3 CA4 CA5 ## 0.946305134 0.782293787 0.621442179 0.578436060 0.262857400 ## CA6 CA7 CA8 ## 0.043153975 0.015510825 0.006164366
mean(data.ca$CA$eig)
## [1] 0.4070205
data.ca$CA$eig>mean(data.ca$CA$eig)
## CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 ## TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
data.ca$CA$eig
## CA1 CA2 CA3 CA4 CA5 ## 0.946305134 0.782293787 0.621442179 0.578436060 0.262857400 ## CA6 CA7 CA8 ## 0.043153975 0.015510825 0.006164366
data.ca$CA$eig>0.6
## CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 ## TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
screeplot(data.ca)
Site | pH | Slope | Pressure | Altitude | Substrate |
---|---|---|---|---|---|
Site1 | 6.1 | 4.2 | 101325 | 2 | Quartz |
Site2 | 6.7 | 9.2 | 101352 | 510 | Shale |
Site3 | 6.8 | 8.6 | 101356 | 546 | Shale |
Site4 | 7.0 | 7.4 | 101372 | 758 | Shale |
Site5 | 7.2 | 5.8 | 101384 | 813 | Shale |
Site6 | 7.5 | 8.4 | 101395 | 856 | Quartz |
Site7 | 7.5 | 0.5 | 101396 | 854 | Quartz |
Site8 | 7.0 | 11.8 | 101370 | 734 | Shale |
Site9 | 8.4 | 8.2 | 101347 | 360 | Quartz |
Site10 | 6.2 | 1.5 | 101345 | 356 | Quartz |
envfit(data.ca,env=enviro[,-1])
## ## ***VECTORS ## ## CA1 CA2 r2 Pr(>r) ## pH 0.91731 -0.39818 0.4044 0.253 ## Slope -0.41261 -0.91091 0.3135 0.396 ## Pressure 0.98437 -0.17609 0.9833 0.001 *** ## Altitude 0.90763 -0.41978 0.9828 0.001 *** ## --- ## Signif. codes: ## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## Permutation: free ## Number of permutations: 999 ## ## ***FACTORS: ## ## Centroids: ## CA1 CA2 ## SubstrateQuartz 0.1358 0.6470 ## SubstrateShale -0.2098 -0.9992 ## ## Goodness of fit: ## r2 Pr(>r) ## Substrate 0.3375 0.041 * ## --- ## Signif. codes: ## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## Permutation: free ## Number of permutations: 999
plot(data.ca) plot(envfit(data.ca,env=enviro[,-1]))
data.lm <- lm(data.ca$CA$u[,1:3] ~ enviro$Altitude + enviro$Slope+enviro$pH+enviro$Substrate) summary(data.lm)
## Response CA1 : ## ## Call: ## lm(formula = CA1 ~ enviro$Altitude + enviro$Slope + enviro$pH + ## enviro$Substrate) ## ## Residuals: ## Site1 Site2 Site3 Site4 Site5 Site6 ## 0.422144 0.061252 -0.002323 0.112485 0.232025 0.287221 ## Site7 Site8 Site9 Site10 ## -0.002549 -0.403439 -0.161979 -0.544838 ## ## Coefficients: ## Estimate Std. Error t value ## (Intercept) -1.5720999 1.7269003 -0.910 ## enviro$Altitude 0.0033945 0.0006537 5.193 ## enviro$Slope -0.0367321 0.0551127 -0.666 ## enviro$pH -0.0241178 0.2812720 -0.086 ## enviro$SubstrateShale -0.5363786 0.4150506 -1.292 ## Pr(>|t|) ## (Intercept) 0.40438 ## enviro$Altitude 0.00349 ** ## enviro$Slope 0.53461 ## enviro$pH 0.93500 ## enviro$SubstrateShale 0.25275 ## --- ## Signif. codes: ## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 0.4042 on 5 degrees of freedom ## Multiple R-squared: 0.8972, Adjusted R-squared: 0.815 ## F-statistic: 10.91 on 4 and 5 DF, p-value: 0.01098 ## ## ## Response CA2 : ## ## Call: ## lm(formula = CA2 ~ enviro$Altitude + enviro$Slope + enviro$pH + ## enviro$Substrate) ## ## Residuals: ## Site1 Site2 Site3 Site4 Site5 Site6 ## 0.870600 0.004159 -0.109777 -0.243666 0.519301 0.252775 ## Site7 Site8 Site9 Site10 ## 0.257422 -0.170017 -0.318529 -1.062268 ## ## Coefficients: ## Estimate Std. Error t value ## (Intercept) 4.214e+00 3.014e+00 1.398 ## enviro$Altitude -5.495e-06 1.141e-03 -0.005 ## enviro$Slope 3.346e-03 9.619e-02 0.035 ## enviro$pH -5.270e-01 4.909e-01 -1.073 ## enviro$SubstrateShale -1.623e+00 7.244e-01 -2.240 ## Pr(>|t|) ## (Intercept) 0.2209 ## enviro$Altitude 0.9963 ## enviro$Slope 0.9736 ## enviro$pH 0.3321 ## enviro$SubstrateShale 0.0752 . ## --- ## Signif. codes: ## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 0.7054 on 5 degrees of freedom ## Multiple R-squared: 0.7305, Adjusted R-squared: 0.5149 ## F-statistic: 3.388 on 4 and 5 DF, p-value: 0.1066 ## ## ## Response CA3 : ## ## Call: ## lm(formula = CA3 ~ enviro$Altitude + enviro$Slope + enviro$pH + ## enviro$Substrate) ## ## Residuals: ## Site1 Site2 Site3 Site4 Site5 Site6 Site7 ## -1.2780 1.0341 1.0361 -1.7686 -0.6495 -0.3962 0.5326 ## Site8 Site9 Site10 ## 0.3479 0.1555 0.9860 ## ## Coefficients: ## Estimate Std. Error t value ## (Intercept) -0.2674575 5.6952905 -0.047 ## enviro$Altitude -0.0001025 0.0021558 -0.048 ## enviro$Slope 0.1369508 0.1817607 0.753 ## enviro$pH 0.0172449 0.9276307 0.019 ## enviro$SubstrateShale -1.2384816 1.3688304 -0.905 ## Pr(>|t|) ## (Intercept) 0.964 ## enviro$Altitude 0.964 ## enviro$Slope 0.485 ## enviro$pH 0.986 ## enviro$SubstrateShale 0.407 ## ## Residual standard error: 1.333 on 5 degrees of freedom ## Multiple R-squared: 0.2334, Adjusted R-squared: -0.3799 ## F-statistic: 0.3805 on 4 and 5 DF, p-value: 0.8148