https://github.com/pcinereus/SUYRs_public
https://pcinereus.github.io/SUYRs_docs/
11 September, 2023
https://github.com/pcinereus/SUYRs_public
https://pcinereus.github.io/SUYRs_docs/
| Day | Topic |
|---|---|
| 1 | Intro to Version control (git), reproducible research (quarto) and setting up R environment |
| 2 | Introduction to Bayesian analyses and (generalized) linear models (GLM) |
| 3 | Day 2 continued - Bayesian GLM continued |
| 4 | Day 3 continued - Bayesian GLM continued |
| 5 | Bayesian generalized linear mixed effects models (GLMM) |
| 6 | Day 5 continued - Bayesian GLMM |
| 7 | Day 6 continued - Bayesian GLMM |
| 8 | Bayesian generalized additive models (GAM + GAMM) |
| 9 | Regression trees |
| 10 | Multivariate analyses |
https://github.com/rstudio/cheatsheets/raw/master/base-r.pdf
https://github.com/rstudio/cheatsheets/raw/master/rstudio-ide.pdf
install.packages("tidyverse")library("dplyr")
## ## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats': ## ## filter, lag
## The following objects are masked from 'package:base': ## ## intersect, setdiff, setequal, union
library("tidyverse")
## ── Attaching core tidyverse packages ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse 2.0.0 ── ## ✔ forcats 1.0.0 ✔ readr 2.1.4 ## ✔ ggplot2 3.4.2 ✔ stringr 1.5.0 ## ✔ lubridate 1.9.2 ✔ tibble 3.2.1 ## ✔ purrr 1.0.1 ✔ tidyr 1.3.0 ## ── Conflicts ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ── ## ✖ dplyr::filter() masks stats::filter() ## ✖ dplyr::lag() masks stats::lag() ## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
install.packages("car") # for regression diagnostics
install.packages("ggfortify") # for model diagnostics
install.packages("DHARMa") # for model diagnostics
install.packages("see") # for model diagnostics
install.packages("lindia") # for diagnostics of lm and glm
install.packages("broom") # for consistent, tidy outputs
install.packages("knitr") # for knitting documents and code
install.packages("glmmTMB") # for model fitting
install.packages("effects") # for partial effects plots
install.packages("ggeffects") # for partial effects plots
install.packages("emmeans") # for estimating marginal means
install.packages("modelr") # for auxillary modelling functions
install.packages("performance") # for model diagnostics
install.packages("datawizard") # for data properties
install.packages("insight") # for model information
install.packages("sjPlot") # for outputs
install.packages("report") # for reporting methods/results
install.packages("easystats") # framework for stats, modelling and visualisation
install.packages("MuMIn") # for AIC and model selection
install.packages("MASS") # for old modelling routines
install.packages("patchwork") # for combining multiple plots together
install.packages("gam") # for GAM(M)s
install.packages("gratia") # for GAM(M) plots
install.packages("modelbased") # for model info
install.packages("broom.mixed") # for tidy outputs from mixed models
install.packages("car") # for regression diagnostics
install.packages("ggfortify") # for model diagnostics
install.packages("DHARMa") # for model diagnostics
install.packages("see") # for model diagnostics
install.packages("broom") # for consistent, tidy outputs
install.packages("knitr") # for knitting documents and code
install.packages("glmmTMB") # for model fitting
install.packages("effects") # for partial effects plots
install.packages("ggeffects") # for partial effects plots
install.packages("emmeans") # for estimating marginal means
install.packages("modelr") # for auxillary modelling functions
install.packages("performance") # for model diagnostics
install.packages("datawizard") # for data properties
install.packages("insight") # for model information
install.packages("sjPlot") # for outputs
install.packages("report") # for reporting methods/results
install.packages("easystats") # framework for stats, modelling and visualisation
install.packages("patchwork") # for combining multiple plots together
install.packages("modelbased") # for model info
install.packages("broom.mixed") # for tidy outputs from mixed models
install.packages("tidybayes") # for tidy outputs from mixed models
and then there is cmdstan or rstan and brms….
stats::filter() dplyr::filter()
mean
## function (x, ...)
## UseMethod("mean")
## <bytecode: 0x5654501000d0>
## <environment: namespace:base>base:::mean.default
## function (x, trim = 0, na.rm = FALSE, ...)
## {
## if (!is.numeric(x) && !is.complex(x) && !is.logical(x)) {
## warning("argument is not numeric or logical: returning NA")
## return(NA_real_)
## }
## if (isTRUE(na.rm))
## x <- x[!is.na(x)]
## if (!is.numeric(trim) || length(trim) != 1L)
## stop("'trim' must be numeric of length one")
## n <- length(x)
## if (trim > 0 && n) {
## if (is.complex(x))
## stop("trimmed means are not defined for complex data")
## if (anyNA(x))
## return(NA_real_)
## if (trim >= 0.5)
## return(stats::median(x, na.rm = FALSE))
## lo <- floor(n * trim) + 1
## hi <- n + 1 - lo
## x <- sort.int(x, partial = unique(c(lo, hi)))[lo:hi]
## }
## .Internal(mean(x))
## }
## <bytecode: 0x565451e348a0>
## <environment: namespace:base>knitr and rmarkdown packageshttps://github.com/rstudio/cheatsheets/raw/master/rmarkdown-2.0.pdf
|>)