https://github.com/pcinereus/SUYRs_public
https://pcinereus.github.io/SUYRs_docs/
11 September, 2023
https://github.com/pcinereus/SUYRs_public
https://pcinereus.github.io/SUYRs_docs/
Day | Topic |
---|---|
1 | Intro to Version control (git), reproducible research (quarto) and setting up R environment |
2 | Introduction to Bayesian analyses and (generalized) linear models (GLM) |
3 | Day 2 continued - Bayesian GLM continued |
4 | Day 3 continued - Bayesian GLM continued |
5 | Bayesian generalized linear mixed effects models (GLMM) |
6 | Day 5 continued - Bayesian GLMM |
7 | Day 6 continued - Bayesian GLMM |
8 | Bayesian generalized additive models (GAM + GAMM) |
9 | Regression trees |
10 | Multivariate analyses |
https://github.com/rstudio/cheatsheets/raw/master/base-r.pdf
https://github.com/rstudio/cheatsheets/raw/master/rstudio-ide.pdf
install.packages("tidyverse")
library("dplyr")
## ## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats': ## ## filter, lag
## The following objects are masked from 'package:base': ## ## intersect, setdiff, setequal, union
library("tidyverse")
## ── Attaching core tidyverse packages ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse 2.0.0 ── ## ✔ forcats 1.0.0 ✔ readr 2.1.4 ## ✔ ggplot2 3.4.2 ✔ stringr 1.5.0 ## ✔ lubridate 1.9.2 ✔ tibble 3.2.1 ## ✔ purrr 1.0.1 ✔ tidyr 1.3.0 ## ── Conflicts ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ── ## ✖ dplyr::filter() masks stats::filter() ## ✖ dplyr::lag() masks stats::lag() ## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
install.packages("car") # for regression diagnostics install.packages("ggfortify") # for model diagnostics install.packages("DHARMa") # for model diagnostics install.packages("see") # for model diagnostics install.packages("lindia") # for diagnostics of lm and glm install.packages("broom") # for consistent, tidy outputs install.packages("knitr") # for knitting documents and code install.packages("glmmTMB") # for model fitting install.packages("effects") # for partial effects plots install.packages("ggeffects") # for partial effects plots install.packages("emmeans") # for estimating marginal means install.packages("modelr") # for auxillary modelling functions install.packages("performance") # for model diagnostics install.packages("datawizard") # for data properties install.packages("insight") # for model information install.packages("sjPlot") # for outputs
install.packages("report") # for reporting methods/results install.packages("easystats") # framework for stats, modelling and visualisation install.packages("MuMIn") # for AIC and model selection install.packages("MASS") # for old modelling routines install.packages("patchwork") # for combining multiple plots together install.packages("gam") # for GAM(M)s install.packages("gratia") # for GAM(M) plots install.packages("modelbased") # for model info install.packages("broom.mixed") # for tidy outputs from mixed models
install.packages("car") # for regression diagnostics install.packages("ggfortify") # for model diagnostics install.packages("DHARMa") # for model diagnostics install.packages("see") # for model diagnostics install.packages("broom") # for consistent, tidy outputs install.packages("knitr") # for knitting documents and code install.packages("glmmTMB") # for model fitting install.packages("effects") # for partial effects plots install.packages("ggeffects") # for partial effects plots install.packages("emmeans") # for estimating marginal means install.packages("modelr") # for auxillary modelling functions install.packages("performance") # for model diagnostics install.packages("datawizard") # for data properties install.packages("insight") # for model information install.packages("sjPlot") # for outputs
install.packages("report") # for reporting methods/results install.packages("easystats") # framework for stats, modelling and visualisation install.packages("patchwork") # for combining multiple plots together install.packages("modelbased") # for model info install.packages("broom.mixed") # for tidy outputs from mixed models install.packages("tidybayes") # for tidy outputs from mixed models
and then there is cmdstan
or rstan
and brms
….
stats::filter() dplyr::filter()
mean
## function (x, ...) ## UseMethod("mean") ## <bytecode: 0x5654501000d0> ## <environment: namespace:base>
base:::mean.default
## function (x, trim = 0, na.rm = FALSE, ...) ## { ## if (!is.numeric(x) && !is.complex(x) && !is.logical(x)) { ## warning("argument is not numeric or logical: returning NA") ## return(NA_real_) ## } ## if (isTRUE(na.rm)) ## x <- x[!is.na(x)] ## if (!is.numeric(trim) || length(trim) != 1L) ## stop("'trim' must be numeric of length one") ## n <- length(x) ## if (trim > 0 && n) { ## if (is.complex(x)) ## stop("trimmed means are not defined for complex data") ## if (anyNA(x)) ## return(NA_real_) ## if (trim >= 0.5) ## return(stats::median(x, na.rm = FALSE)) ## lo <- floor(n * trim) + 1 ## hi <- n + 1 - lo ## x <- sort.int(x, partial = unique(c(lo, hi)))[lo:hi] ## } ## .Internal(mean(x)) ## } ## <bytecode: 0x565451e348a0> ## <environment: namespace:base>
knitr
and rmarkdown
packageshttps://github.com/rstudio/cheatsheets/raw/master/rmarkdown-2.0.pdf
|>
)